Vector fields and differential equations
نویسندگان
چکیده
Abstract The geometry of orbits families smooth vector fields is an important object mathematics due to its importance in applications, the theory dynamic systems and foliation theory. paper devoted applications four dimensional Euclidean space differential equations. It shown that generate singular ever regular leaf which a surface negative Gauss curvature zero normal torsion. In addition, invariant functions considered are used find solutions two-dimensional heat equation under groups transformations generated by these fields. this smoothness class C ∞ .
منابع مشابه
Differential Equations with singular fields
This paper investigates the well posedness of ordinary differential equations and more precisely the existence (or uniqueness) of a flow through explicit compactness estimates. Instead of assuming a bounded divergence condition on the vector field, a compressibility condition on the flow (bounded jacobian) is considered. The main result provides existence under the condition that the vector fie...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Nonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations
This paper studies relationships between the order reductions of ordinary differential equations derived by the existence of λ-symmetries, telescopic vector fields and some nonlocal symmetries obtained by embedding the equation in an auxiliary system. The results let us connect such nonlocal symmetries with approaches that had been previously introduced: the exponential vector fields and the λ-...
متن کاملLarge Deviations for Stochastic Differential Equations on S Associated with the Critical Sobolev Brownian Vector Fields
The purpose of our paper is to prove a large deviation principle on the asymptotic behavior of the stochastic differential equations on the sphere S associated with a critical Sobolev Brownian vector field which was constructed by Fang and Zhang 1 . Recall that Schilder theorem states that if B is the real Brownian motion and C0 0, 1 is the space of real continuous functions defined on 0, 1 , n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2022
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2388/1/012041